Solution Techniques for Elementary Partial Differential Equations 3rd Edition, Instructor’s Solutions Manual

tbpush
5天前发布

Solution Techniques for Elementary Partial Differential Equations 3rd Edition, Instructor’s Solutions Manual
Solution Techniques for Elementary Partial Differential Equations, Third Edition, Instructor’s Solutions Manual ch1-ch14

Chapter 1
Section 1.1

  1. This is a variables separable equation and y = 0 is a solution. If y 6= 0, then
    dy
    y
    =
    2x
    x 2 + 1
    dx
    ⇒ ln|y| = ln(x 2 + 1) + C 0
    ⇒ y(x) = C(x 2 + 1),
    where C 6= 0. The value C = 0 generates the singular solution y = 0.
  2. Proceeding as in 1, for y 6= −1 we have
    y ′ = 3x 2 (y + 1)

    dy
    y + 1
    = 3x 2
    ⇒ ln|y + 1| = x 3 + C 0
    ⇒ y = Ce x
    3
    − 1,
    where C 6= 0. The value C = 0 generates the singular solution y = −1.
  3. This is a linear equation, solved by the integrating factor method:
    dy
    dx
    +
    2
    x − 1
    y =
    x
    x − 1
    ⇒ µ = exp
    ?Z
    2
    x − 1
    dx
    ?
    = e 2ln|x−1| = (x − 1) 2
    ⇒ y(x) =
    1
    (x − 1) 2
    Z
    (x − 1) 2
    x
    x − 1
    dx =
    1
    (x − 1) 2
    Z
    (x 2 − x)dx
    = (x − 1) −2 ( 1
    3
    x 3 −
    1
    2
    x 2 + C ) .
  4. Proceeding as in 3, we have
    dy
    dx

    2
    x
    y = x 3 e x
    ⇒ µ = exp
    ?Z

    2
    x
    dx
    ?
    = e −lnx
    2
    =
    1
    x 2
    ⇒ y(x) = x 2
    Z
    1
    x 2
    x 3 e x dx = x 2
    Z
    xe x dx
    = x 2
    ?
    xe x −
    Z
    e x dx
    ?
    = x 2 (xe x − e x + C).

download via https://r.24zhen.com/n33WM

Like 0 Share Favorite
评论
所有页面的评论已关闭