
	

	

1-1 
Copyright © 2021 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior 

written consent of McGraw-Hill Education. 
		

       chapter   1 
 Mendel’s Principles of Heredity 

Synopsis 
Chapter 1 covers the basic principles of inheritance that can be summarized as Mendel’s Laws of 
Segregation (for one gene) and Independent Assortment (for more than one gene). 

Key terms  
genes and alleles of genes – A gene determines a trait, and different alleles or forms of a 

gene exist. The color gene in peas has two alleles: yellow and green. 

genotype and phenotype – Genotype is the genetic makeup of an organism (written as 
alleles of specific genes), while phenotype is how the organism looks. 

 homozygous and heterozygous – When both alleles of a gene are the same, the 
individual is homozygous for that gene (or pure breeding). If the two alleles are 
different, the organism is heterozygous (also called a hybrid). 

dominant and recessive – The dominant allele is the one that controls phenotype in the 
heterozygous genotype; the recessive allele controls phenotype only in a homozygote. 

monohybrid or dihybrid cross – a cross between individuals who are both heterozygotes 
for one gene (monohybrid) or for two genes (dihybrid). 

testcross – performed to determine if an individual with the dominant characteristic is 
homozygous or heterozygous: An individual with the dominant phenotype but 
unknown genotype is crossed with an individual with the recessive phenotype. 

Key ratios  
3:1 – Ratio of progeny phenotypes in a cross between monohybrids  
   [Aa × Aa → 3 A– (dominant phenotype) : 1 aa (recessive phenotype)] 

1:2:1 – Ratio of progeny genotypes in a cross between monohybrids  
   (Aa × Aa → 1 AA : 2 Aa : 1aa) 

1:1 – Ratio of progeny genotypes in a cross between a heterozygote and a recessive homozygote  
   (Aa × aa → 1 Aa : 1aa) 

1:0 – All progeny are the same phenotype. Can result from either of two cases: 
   [AA × – –  → A– (all dominant phenotype)] 
   [aa × aa → aa (all recessive phenotype)] 

9:3:3:1 – Ratio of progeny phenotypes in a dihybrid cross  
   (Aa Bb × Aa Bb → 9 A– B– : 3 A– bb : 3 aa B – : 1 aa bb) 
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Problem Solving 
 
The essential component of solving most genetics problems is to DIAGRAM THE CROSS in a 
consistent manner. Usually you will be given information about phenotypes, so the diagram would 
be: 

 Phenotype of one parent × phenotype of the other parent → phenotype(s) of progeny 
The goal is to assign genotypes to the parents and then use these predicted genotypes to generate 
the genotypes, phenotypes, and ratios of progeny. If the predicted progeny match the observed 
data you were provided, then your genetic explanation is plausible. 

The points listed below will be particularly helpful in guiding your problem solving: 
• Remember that two alleles of each gene exist when describing the genotypes of 

individuals. But if you are describing gametes, remember that only one allele of each 
gene is in a gamete. 

• You will need to determine whether a character is dominant or recessive. Two main 
clues will help you answer this question.  

o First, if the parents of a cross are true breeding for the alternative characters of the 
trait, look at the phenotype of the F1 progeny. Their genotype must be 
heterozygous, and their phenotype is thus determined by the dominant allele of 
the gene. 

o Second, look at the F2 progeny (that is, the progeny of the F1 hybrids). The 3/4 
portion of the 3:1 phenotypic ratio indicates the dominant character. 

• You should recognize the need to set up a testcross (to establish the genotype of an 
individual showing the dominant character by crossing this individual to a homozygote 
for the recessive allele). 

• You must keep in mind the basic rules of probability: 
o Product rule:  If two outcomes must occur together as the result of independent 

events, the probability of one outcome AND the other outcome is the product of 
the two individual probabilities. 

o Sum rule:  If there is more than one way in which an outcome can be produced, 
the probability of one OR the other occurring is the sum of the two mutually 
exclusive individual probabilities. 

• Be aware that sometimes you need to use conditional probability, meaning that an 
event’s probability is influenced by its relationship to another event that has already 
occurred. You were introduced to conditional probability in Solved Problem III in this 
chapter, and several of the problems in Section 1.3 require this kind of thinking. For 
example, suppose you are given a pedigree diagram for a disease caused by a recessive 
allele. You are asked to determine the chance that an unaffected individual is a carrier 
(Dd ), when both parents are carriers. As the cross that produced the unaffected 
individual is Dd × Dd, you would expect the chance of a Dd child to be 1/2. This is true, 
but it was not the question you were asked! You know something about the individual in 
question—which is that they are unaffected—they cannot be dd. This means that in this 
case, the 1 DD : 2 Dd : 1 dd ratio changes to 1 DD : 2 Dd, and the chance is 2/3 that the 
unaffected individual is a carrier. When solving probability problems in pedigrees, 
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always think carefully about what you know (and what you don’t know) about each 
individual. 

• Remember that Punnett squares are not the only means of analyzing a cross; 
branched-line diagrams and calculations of probabilities using the product and sum 
rules are more efficient ways of looking at complicated crosses involving more than 
one or two genes. 

• You should be able to draw and interpret pedigrees. When the trait is rare, look for 
vertical patterns of inheritance characteristic of dominant traits, and horizontal patterns 
that typify recessive traits. Check your work by assigning genotypes to all individuals in 
the pedigree and verifying that these make sense. 

• The vocabulary problem (the first problem in the set) is a useful gauge of how well you 
know the terms most crucial for your understanding of the chapter. 

 
Vocabulary 

1.   
a. phenotype 4. observable characteristic  

b. alleles  3. alternate forms of a gene  

c.  independent 6. alleles of one gene separate into gametes randomly 
assortment  with respect to alleles of other genes 

d.  gametes 7. reproductive cells containing only one copy of each  
  gene 

e.  gene 11. the heritable entity that determines a characteristic 

f.  segregation 13. the separation of the two alleles of a gene into 
different gametes 

g.  heterozygote 10. an individual with two different alleles of a gene  

h.  dominant 2. the allele expressed in the phenotype of the  
  heterozygote 

i.  F1        14. offspring of the P generation 

j.  testcross 9. the cross of an individual of ambiguous genotype 
  with a homozygous recessive individual 

k.  genotype 12. the alleles an individual has 

l.  recessive 8. the allele that does not contribute to the phenotype 
  of the heterozygote 

m.  dihybrid cross 5. a cross between individuals both heterozygous for 
  two genes 

n.  homozygote 1. having two identical alleles of a given gene 
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Section 1.1 
2. Prior to Mendel, people held two basic misconceptions about inheritance. First was the 

common idea of blended inheritance: that the parental characteristics become mixed in 
the offspring and forever changed. Second, many people thought that one parent 
contributes the most to an offspring’s inherited features. (For example, some people 
thought they saw a fully formed child in a human sperm.) 

In addition, people who studied inheritance did not approach the problem in an 
organized way. They did not always control their crosses. They did not look at traits with 
clear-cut alternative characteristics. They did not start with pure-breeding lines. They did 
not count the progeny types in their crosses. For these reasons, they could not develop 
the same insights as did Mendel.  

3. Several advantages exist for using peas for the study of inheritance:  
•  Peas have a fairly rapid generation time (at least two generations per year if 

grown in the field, three or four generations per year if grown in greenhouses).  
•  Peas can either self-fertilize or be crossed artificially by an experimenter. 
•  Peas produce large numbers of offspring (hundreds per parent). 
•  Peas can be maintained as pure-breeding lines, simplifying the ability to 

perform subsequent crosses. 
•  Because peas have been maintained as inbred stocks, two easily distinguished 

and discrete forms of many traits are known. 
•  Peas are easy and inexpensive to grow. 

 In contrast, studying genetics in humans has several disadvantages:  
•  The generation time of humans is very long (roughly 20 years). 
•  No self-fertilization occurs in humans, and it is not ethical to manipulate 

crosses. 
•  Humans produce only a small number of offspring per mating (usually only 

one) or per parent (almost always fewer than 20). 
• Although people who are homozygous for a trait do exist (analogous to pure-

breeding stocks), homozygosity cannot be maintained because mating with 
another individual is needed to produce the next generation. 

•  Because human populations are not inbred, most human traits show a 
continuum of phenotypes; only a few traits have two distinct forms. 

•  People require a lot of expensive care to “grow”. 

One major advantage exists nonetheless for the study of genetics in humans: Because 
many inherited traits result in disease syndromes, and because the world’s population 
now exceeds 7 billion people, a very large number of people with diverse, variant 
phenotypes can be recognized. These variations are the raw material of genetic analysis. 
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Section 1.2 

4. a.   Two phenotypes are seen in the second generation of this cross: normal and 
albino. Thus, only one gene with two alleles is needed to control the phenotypes 
observed. The 3:1 ratio of these phenotypes in the F2 generation will be seen only 
if a single gene is involved. 

 b.  Note that the phenotype of the first generation progeny is normal color, and that in 
the second generation, there is a ratio of 3 normal : 1 albino. Both observations show 
that the allele controlling the normal phenotype (A) is dominant to the allele 
controlling the albino phenotype (a ). 

 c. In a testcross, an individual showing the dominant phenotype but that has an 
unknown genotype (the normal-colored female parent in this problem) is mated with 
an individual that shows the recessive phenotype and is therefore homozygous for the 
recessive allele. In this case, the individual with the recessive phenotype must be both 
male and an albino, so the male parent’s genotype is aa . The normally colored 
offspring must receive an A allele from the mother, so the genotype of the normal 
offspring of the testcross is Aa. The albino offspring must receive an a allele from 
the mother, so the genotype of the albino offspring of the testcross is aa . Thus, the 
female parent must be heterozygous Aa. 

5. Because two different phenotypes result from the mating of two cats of the same 
phenotype, and because the ratio of the short-haired to long-haired progeny is 3:1, only a 
single gene is involved, and the short-haired parent cats must have been heterozygous. 
The phenotype expressed in the heterozygotes (the parent cats) is the dominant 
phenotype. Therefore, short hair is dominant to long hair. 

6. a.  Two affected individuals have an affected child and a normal child. This outcome is 
not possible if the affected individuals were homozygous for a recessive allele 
conferring piebald spotting, and if the trait is controlled by a single gene. Therefore, 
piebald must be the dominant characteristic. 

 b. If the trait is dominant, the piebald parents could be either homozygous (PP ) or 
heterozygous (Pp). However, because the two affected individuals have an unaffected 
child (pp), they both must be heterozygous (Pp). A diagram of the cross follows: 

         piebald  ×  piebald  →  1 piebald : 1 normal 
                          Pp                Pp                  Pp               pp 
   
  Note that although the apparent ratio is 1:1, this is not a testcross but is instead a cross 

between two monohybrids. The reason for this discrepancy is that only two progeny 
were obtained, so this number is insufficient to establish what the true ratio would be 
(it should be 3:1) if many progeny resulted from the mating. 

7. You would conduct a testcross between your normal-winged fly (W–) and a short-
winged fly that must be homozygous recessive (ww ). The possible results are 
diagrammed here; the first genotype in each cross is that of the normal-winged fly whose 
genotype was originally unknown. Note that if the normal-winged fly is a homozygote, 
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all the progeny should have normal wings, but if the normal-winged fly is a 
heterozygote, half the progeny should have normal wings and the other half should 
have short wings. 

   WW  ×  ww   →   all Ww (normal wings) 

   Ww   ×  ww   →   1/2 Ww  (normal wings) :  1/2  ww (short wings) 

8. First diagram the crosses: 
  closed  ×  open   →   F1 all open  →  F2 145 open : 59 closed 

     F1 open  ×  closed   →   81 open : 77 closed  

The results of the crosses fit the pattern of inheritance of a single gene, with open 
being dominant to closed. The first cross is similar to those Mendel did with pure-
breeding parents, although you were not provided with the information that the starting 
plants were true-breeding. The F1 plants are open, indicating that open is dominant. 
The closed parent must be homozygous for the recessive allele. Because only one 
phenotype is seen among the F1 plants, the open parent must be homozygous for the 
dominant allele. Thus, the parental cucumber plants were indeed true-breeding 
homozygotes. 
  Self-fertilization of the F1 plants results in a 3:1 ratio of open : closed among the F2 
progeny. The 3:1 ratio in the F2 shows that a single gene controls the trait and that the 
F1 plants are all monohybrids (that is, they are heterozygotes). 
  The final cross verifies that the F1 plants from the first cross are heterozygtes because 
this testcross yields a 1:1 ratio of open: closed progeny. In summary, all the data are 
consistent with the trait being determined by one gene with two alleles, and open being 
the dominant characteristic. Rewritten as genotypes for a gene with alleles O and o, the 
crosses were: 

  oo (closed)   ×  OO (open)   →   F1 Oo (open) →  F2  145 O– (open): 59 oo (closed) 

  F1 Oo (open)  ×  oo (closed)   →   81 Oo (open) : 77 oo (closed)  

9. The dominant characteristic (short tail) is easier to eliminate from the population by 
selective breeding. The reason is you can recognize every animal that has inherited 
the short tail allele, because only one such dominant allele is needed to see the 
characteristic. If you prevent all the short-tailed animals from mating, then the allele 
would become extinct.  

   On the other hand, the recessive dilute allele can be passed unrecognized from 
generation to generation in heterozygous mice (who are carriers ). The heterozygous mice 
are not dilute, so they cannot be distinguished from homozygous dominant mice with 
normal coat color. You could prevent the homozygous recessive mice with the dilute 
characteristic from mating, but the dilute allele would remain among the carriers, which 
you could not recognize. 

10. The problem states that only one gene is involved in this trait, and that the dominant 
allele is dimpled (D ) while the recessive allele is nondimpled (d ). (We are using 
Mendelian symbols here instead of human symbols for genotypes to emphasize which 
allele is dominant and which is recessive.) 
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a.  Diagram the cross described in this part of the problem: 
   nondimpled ♂  ×  dimpled ♀ →   proportion of dimpled F1? 

Note that the dimpled woman in this cross had a dd (nondimpled) mother, so the 
dimpled woman MUST be heterozygous. We can thus rediagram this cross with 
genotypes: 
   dd (nondimpled) ♂  ×  Dd  (dimpled) ♀ →   1/2 Dd (dimpled) : 1/2 dd (nondimpled) 
One half of the children produced by this couple would be dimpled. 

b.  Diagram the cross: 

   dimpled (D? ) ♂  ×  nondimpled (dd ) ♀ →   nondimpled F1 (dd ) 
  Because they have a nondimpled child (dd ), the man must have a d allele to 

contribute to the offspring. The man is thus of genotype Dd. 

c.  Diagram the cross: 

   dimpled (D? ) ♂  ×  nondimpled (dd ) ♀ →   8 F1, all dimpled (D–) 
 The D allele in the children must come from their father. The father could be either 

DD or Dd, but it is most probable that the father’s genotype is DD. We cannot rule 
out completely that the father is a Dd heterozygote. However, if this was the case, the 
probability that all 8 children would inherit the D allele from a Dd parent is only 
(1/2)8 = 1/256. 

11.  a.  The 3:1 ratio in the progeny of cross 1 × 4 suggests that a single gene controls 
flowering time, and that late (F  ) is dominant to early (f ).  

 b.  Plants 1 and 4 are Ff  because their progeny exhibit a 3 late (F–) :1 early (ff  ) ratio. 
Plant 2 is f f  because when crossed with plant 1 (Ff × f f ), the progeny are in a 1:1 
ratio of late (Ff ) to early (ff  ). Plant 3 is FF because when crossed with either 1, 3, 
or 4, all the progeny are late (F−). 

 c.  Selfing of Plant 1 or Plant 4 (Ff  ) would produce progeny in a phenotypic ratio of 
3 late : 1 early (3 F− : 1 f f  ). Selfing of Plant 2 (f f ) would produce all early (f f ) 
progeny, and selfing of Plant 3 would result in progeny that are all late (FF ). 

12. a. You need to realize that the results tabulated are unlike those of the plants in the 
previous problem in an important way: The parents are not two individuals who had 
30–50 progeny. Instead, the entries in the table show the progeny of many pairs of 
parents with the same characteristics, but who could have different genotypes. This 
means that if sticky and dry are controlled by alternate alleles of a single gene, in any 
row of the table involving parents with the dominant phenotype, those parents could 
actually be a mixture of homozygous dominant and heterozygous individuals.  

   Thus, in a row where both parents have the dominant phenotype, some of the 
crosses could be Ss × Ss, while in a row where one parent has the dominant 
phenotype and the other parent has the recessive phenotype, some of the crosses 
could be Ss × ss. Both cases could produce some progeny who will be homozygous 
recessive (ss ). Only crosses between two homozygous recessive individuals will result 
in progeny that all have the recessive phenotype. The only crosses that fit this 
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criterion are in the row: dry  ×  dry  →  all dry. Therefore, dry is the recessive 
phenotype (ss ) and sticky is the dominant phenotype (S–). 

b. 3:1 or 1:1 ratios are not observed in the table because some sticky individuals in 
each of the first two rows are SS while others are Ss .  

   In the first row of the table, the sticky × sticky matings in this human population 
are not simply crosses between heterozygotes, but instead a mix of three different 
kinds of matings: between two heterozygotes (Ss × Ss), between two homozygotes 
(SS × SS ), and between a homozygote and heterozygote (SS × Ss ). The progeny from 
the two latter crosses obscure the 3:1 ratio that would result from crosses between 
heterozygotes.  

  In the second row of the table, the sticky × dry matings include both Ss × ss  and 
SS  × ss. The progeny of the latter crosses obscure the 1:1 ratio that would result from 
any Ss × ss  testcrosses in the same row. 

13. Diagram the cross: 
  black  ×  red  →  1 black : 1 red 

No, you cannot tell how coat color is inherited from the results of this one mating. 
The 1:1 ratio indicates that this was a testcross—a cross between a heterozygote and a 
homozygous recessive. However, we cannot know from the testcross whether red or black 
is the dominant phenotype. To determine which phenotype is dominant, remember that 
an animal with a recessive phenotype must be homozygous. Thus, if you mate several 
red horses to each other and also mate several black horses to each other, the crosses 
that always yield only offspring with the parental phenotype must have been between 
homozygous recessives. For example, if all the black × black matings result in only black 
offspring, black is recessive. Some of the red × red crosses (that is, crosses between 
heterozygotes) would then result in both red and black offspring in a ratio of 3:1. To 
establish this point, you might have to do several red × red crosses, because some of these 
crosses could be between red horses homozygous for the dominant allele. You could of 
course ensure that you were sampling heterozygotes by using the progeny of black × red 
crosses (such as that described in the problem) for subsequent [black × black] or               
[red × red] crosses.  

14. a. 1/6 because a die has 6 different sides. 

b. Three even numbers exist (2, 4, and 6). The probability of obtaining any one of these 
is 1/6. Because the 3 events are mutually exclusive, use the sum rule: 1/6 + 1/6 + 1/6 
= 3/6 = 1/2. 

c. You must roll either a 3 or a 6, so 1/6 + 1/6 = 2/6 = 1/3. 

 When thinking about probabilities involving 2 dice (in the diagram that follows, a 
white one and a pink one), it helps to realize that: (1) The probabilities calculated 
for rolling both dice simultaneously will be the same as those calculated for rolling 
them in succession (first one, then the other), and (2) as shown in the diagram that 
follows, 36 different outcomes are possible: 
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d. Each die is independent of the other, thus the product rule is used: 1/6 × 1/6 = 1/36. 

(Two 6s is one of the 36 possible outcomes.) 

e. The probability of getting an even number on one die is 3/6 = 1/2 [see part (b)]. This 
is also the probability of getting an odd number on the second die. This result could 
happen either of 2 ways—you could get the odd number first and the even number 
second, or vice versa, and these are mutually exclusive possibilities. Thus, the 
probability of both occurring is (1/2 × 1/2) + (1/2 × 1/2) = 1/4 + 1/4 = 1/2.  

Another way of thinking about this problem is that the first die can land any way 
(probability = 1), but the second die must show an odd number (probability = 1/2) if 
the first die was even, and an even number (probability = 1/2) if the first die was odd. 
Therefore, no matter how the first die lands, the second die has a 1/2 chance of 
landing on a number that satisfies the stated criterion, and so the probability that the 
criterion is satisfied is 1 × 1/2 = 1/2. (You can see in the diagram above that 18 of the 
36 possible outcomes satisfy the criterion that one die has an odd number and the 
other die has an even number.) 

f. The probability of any specific number on a die = 1/6. The probability of the same 
number on the other die = 1/6. The probability of both occurring at same time is        
1/6 × 1/6 = 1/36. The same probability is true for the other 5 possible numbers on the 
dice. Thus, the probability of any of these mutually exclusive situations occurring is 
1/36 + 1/36 + 1/36 + 1/36 + 1/36 + 1/36 = 6/36 = 1/6.  

  Another way of thinking of about this problem is that the first die can land any 
way at all (probability = 1), but the second die must match the first one (probability 
= 1/6). The chance of both events happening is 1 × 1/6 = 1/6. (In other words, 6 of 
the 36 possible outcomes satisfy the criterion that both numbers are the same.) 

g. The probability of getting two numbers both over four is the probability of getting a 5 
or 6 on one die (1/6 + 1/6 = 1/3) and a 5 or 6 on the other die (1/3). The results for 
the two dice are independent events, so 1/3 × 1/3 = 1/9. (In other words, 4 of the 36 
possible outcomes satisfy the criterion both numbers are over 4.) 

15. a.   The probability of drawing a face card = 0.23 (= 12 face cards / 52 cards). The 
probability of drawing a red card = 0.5 (= 26 red cards / 52 cards). The probability 
of drawing a red face card = probability of a red card × probability of a face card 
= 0.23 × 0.5 = 0.12. (Alternatively, 6 red face cards / 52 cards = 0.12.) 
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 b. As seen in part (a), the probability of drawing a face card in a deck of 52 cards is 0.23.  
If after each draw, the card is returned to the deck, then the deck will have 52 cards 
in each draw. Thus, the chance that all four cards picked are face cards is          
(0.23)4 ≈ 0.0028. 

 c. The chance that the first card is a face card is (12/52). If that card was a face card, 
then the chance that the second card is a face card is (11/51), the chance that the third 
card is also a face card is (10/50), and the chance that the fourth card is a face card is 
(9/49). (This is an example of conditional probability, because the probabilities 
change after each draw.) Thus, if the cards are not returned to the deck, the chance 
that the first four cards picked are face cards is (12/52) × (11/51) × (10/50) × 
(9/49) ≈ 0.0018. 

16. a. The Aa bb CC DD woman can produce 2 genetically different eggs that vary in their 
allele of the first gene (A or a). She is homozygous for the other 3 genes and can only 
make eggs with the b C D alleles for these genes. Thus, using the product rule 
(because the inheritance of each gene is independent), she can make 2 × 1 × 1 × 1 = 
2 different types of gametes: (A b C D and a b C D). 

b. Using the same logic, an AA Bb Cc dd woman can produce 1 × 2 × 2 × 1 = 4 different 
types of gametes: A (B or b) (C or c) d. 

c. A woman of genotype Aa Bb cc Dd can make 2 × 2 × 1 × 2 = 8 different types of 
gametes: (A or a) (B or b) c (D or d ). 

d. A woman who is a quadruple heterozygote can make 2 × 2 × 2 × 2 = 16 different 
types of gametes: (A or a) (B or b) (C or c) (D or d ). This problem [like those in parts 
(a–c) above] can also be visualized with a branched-line diagram. 

 
 
 
 
 
 

17. a. The probability of any particular progeny phenotype in this cross depends only on the 
gamete from the heterozygous parent. The reason is that the homozygous recessive 
parent always provides a gamete with all recessive alleles (a b c d). The probability 
that a child will resemble the quadruply heterozygous parent is thus:                              
1/2A × 1/2B × 1/2C × 1/2D = 1/16. The probability that a child will resemble the 
quadruply homozygous recessive parent is: 1/2a × 1/2b × 1/2c × 1/2d = 1/16. The 
probability that a child will resemble either parent is then 1/16 + 1/16 = 1/8. This 
cross will produce 2 different characters for each gene or 2 × 2 × 2 × 2 = 16 potential 
phenotypes. 
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b. The probability of a child resembling the recessive parent is 0; the probability of a 
child resembling the dominant parent is 1 × 1 × 1 × 1 = 1. The probability that a 
child will resemble one of the two parents is 0 + 1 = 1. Only one phenotype is 
possible in the progeny (dominant for all 4 genes), as (1)4 = 1. 

c. The probability that a child would show the dominant character for any one gene is 
3/4 in this sort of cross (remember the 3 : 1 phenotypic ratio in the progeny of 
monohybrid crosses), so the probability of resembling the parent for the traits 
associated with all four genes is (3/4)4 = 81/256. Two characters are possible for 
each gene, so (2)4 = 16 different kinds of progeny. 

d. All progeny will resemble their parents because all the alleles from both parents are 
identical, so the probability = 1. Only one phenotype is possible for each gene in this 
cross; because (1)4 = 1, the child can have only one possible phenotype when 
considering all four genes. 

18. a. The combination of alleles in the egg and sperm allows only one genotype for the 
zygote: aa Bb Cc DD Ee. 

b. Because the inheritance of each gene is independent, you can use the product rule to 
determine the number of different gamete types possible:  
1 × 2 × 2 × 1 × 2 = 8 types of gametes. To figure out the genotypes of these gametes, 
consider the possibilities for each gene separately and then the possible combinations 
of genes in a consistent order. For each gene the possibilities are:  
a, (B : b ), (C : c ), D, and (E : e ). The possibilities can be determined using the product 
rule. Thus, for the first 2 genes [a] × [B : b] gives [a B : a b]. Next, [a B : a b] × [C : c] 
gives [a B C : a B c : a b C : a b c]. Next, [a B C : a B c : a b C : a b c] × [D]                          
gives [a B C D : a B c D : a b C D : a b c D]. And finally, [a B C D : a B c D : a b C D :     
a b c D] × [E : e] gives [(i) a B C D E : (ii)a B C D e  : (iii) a B c D E :                                    
(iv) a B c D e  :  (v) a b C D E : (vi) a b C D e  : (vii) a b c D E : (viii) a b c D e].  

This problem can also be visualized with a branched-line diagram: 
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19. Your friend is wrong. As each of these triplets is an independent event, we use the 
product rule to determine the probability of 3 boys: P(BBB) = 1/2 × 1/2 × 1/2 = 1/8. The 
probability of 3 girls is the same: P(GGG) = 1/8. However, the probability of 2 boys and 
1 girl is greater than 1/8 because it includes three different birth orders—BBG, BGB, 
GBB—each with a probability of 1/8. Thus, we use the sum rule to determine the 
probability of 2 boys and 1 girl in any order: 1/8 + 1/8 + 1/8 = 3/8. The same logic 
applies to two girls and a boy, the probability of which is also 3/8. Notice that because 
3 boys, 3 girls, 2 boys + 1 girl, and 2 girls + 1 boy are the only options, the sum of their 
individual probabilities is 1 (that is, 1/8 + 1/8 + 3/8 + 3/8 = 1).  

20. The first two parts of this problem involve the probability of occurrence of two 
independent traits: the sex of a child and galactosemia. The parents are heterozygous for 
galactosemia, so a 1/4 chance exists that a child will be affected (that is, homozygous 
recessive). The probability that a child is a girl is 1/2. The probability of an affected girl is 
therefore 1/2 × 1/4 = 1/8.  

a. Fraternal (nonidentical) twins result from two independent fertilizations and 
therefore, the probability that both will be girls with galactosemia is the product of 
their individual probabilities (see above); 1/8 × 1/8 = 1/64. 

b. For identical twins, one fertilization gave rise to two individuals. The probability that 
both are girls with galactosemia is 1/8. 

For parts c–g, remember that each child is an independent fertilization. The sex of the 
children is not an issue in these parts of the problem. 

c. Both parents are carriers (heterozygous), so the probability of having an unaffected 
child is 3/4. The probability of 4 unaffected children is 3/4 × 3/4 × 3/4 × 3/4 = 81/256. 

d. The probability that at least one child is affected is the chance of all possible outcomes 
except the one mentioned in part (c). Thus, the probability is 1 − 81/256 = 175/256. 
Note that this general strategy for solving problems, where you first calculate the 
probability of all outcomes except the one of interest, and then subtract that number 
from 1, is often useful for problems where direct calculation of the probability of 
interest is difficult. 

e. The probability of an affected child is 1/4 while the probability of an unaffected child 
is 3/4. Therefore, 1/4 ×1/4 × 3/4 × 3/4 = 9/256. 

f. The probability of 2 affected children and 1 unaffected child in any one particular 
birth order is 1/4 × 1/4 × 3/4 = 3/64. There are 3 mutually exclusive birth orders that 
could produce 2 affected children and 1 unaffected child—unaffected child first born, 
unaffected child second born, and unaffected child third born. Thus, the chance that 
2 out of 3 children will be affected is 3/64 + 3/64 + 3/64 = 9/64. 

g. The genotype of any particular child is independent of all others, so the probability 
of an affected child is 1/4. 

21. Diagram the cross, where P  is the normal pigmentation allele and p is the albino allele: 
  normal (P? )  ×  normal (P? )  →  albino (pp) 
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An albino must be homozygous recessive pp. The parents are normal in pigmentation 
and therefore could be PP or Pp. Because they have an albino child, both parents must 
be carriers (Pp). The probability that their next child will be pp is therefore 1/4. 

22. Diagram the cross: 
  yellow round  ×  yellow round  →  156 yellow round : 54 yellow wrinkled 

The ratio for seed shape is 156 round : 54 wrinkled = 3 round : 1 wrinkled. The parents 
must therefore have been heterozygous (Rr ) for the pea shape gene. All the offspring are 
yellow and therefore are Yy or YY. The parent plants were Y– Rr   × YY Rr .  Because 
no green (yy ) progeny exist, you know at least one of the parents must have been YY . 

23. Diagram the cross: 

smooth black ♂  ×  rough white ♀  →  F1 rough black   
  →  F2  8 smooth white : 25 smooth black : 23 rough white : 69 rough black 

a. The 9:3:3:1 phenotypic ratio in the F2 gives away the answer to this problem. This F2 
ratio tells you that the F1 must be dihybrids, and that rough and black are dominant 
to smooth and white. Let’s use the following symbols: R = rough, r = smooth;              
B = black, b = white. The F1 are thus Rr Bb, and because all the F1 have the same 
phenotype, the parents must have been homozygotes: rr BB (smooth, black) and        
RR bb (rough, white). The F2 are: R– B– (rough black), R– bb (rough white),            
rr BB (smooth black), and rr bb (smooth white).  

b. An F1 male is heterozygous for both genes (Rr Bb). The smooth white F2  female must 
be homozygous recessive (rr bb). Thus, Rr Bb  ×  rr bb  →  1/2 Rr (rough) :                     
1/2 rr (smooth) and 1/2 Bb (black) : 1/2 bb (white). The inheritance of these genes is 
independent, so apply the product rule to find the expected phenotypic ratios among 
the progeny: 1/4 rough black (Rr Bb) : 1/4 rough white (Rr bb) : 1/4 smooth black 
(rr Bb) : 1/4 smooth white (rr bb).  

24. Diagram the cross: 
YY rr  ×  yy RR  →  all Yy Rr  →  9/16 Y– R– (yellow round) : 3/16 Y– rr 
(yellow wrinkled) : 3/16 yy R– (green round) : 1/16 yy rr (green wrinkled)  

Each F2 pea results from a separate fertilization and so a pod may have peas of different 
phenotypes. The probability of 7 yellow round F2   peas is (9/16)7 = 4,782,969/268,435,456 
≈ 0.018. 

 
25. a. First diagram the cross, and then figure out the progeny ratios for each gene: 

 Aa Tt  ×  Aa Tt →   3/4 A– (achoo) : 1/4 aa (non-achoo) and  
 3/4 T– (trembling) : 1/4 tt  (non-trembling) 

The probability that a child will be A– (and have achoo syndrome) is independent of 
the probability that it will lack a trembling chin, so the probability of a child with 
achoo syndrome but without trembling chin is 3/4 A– × 1/4 tt = 3/16. 

b. The probability that a child would have neither dominant characteristic is 1/4 aa × 
1/4 tt = 1/16. 
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26. The F1 must be heterozygous for all the genes because the parents were pure breeding 
(homozygous). The appearance of the F1 establishes that the dominant characters for 
the four traits are tall, purple flowers, axial flowers and green pods. 

a. If you cross two heterozygous F1, both dominant and recessive characters for each 
trait will appear among the progeny. Thus, you expect 2 × 2 × 2 × 2 = 16 different 
phenotypes when considering the four traits together. The possibilities can be 
determined using the product rule with the pairs of characters for each gene, because 
the traits are inherited independently. Thus: [tall : dwarf] × [green : yellow] gives [tall 
green : tall yellow : dwarf green : dwarf yellow] × [purple : white] gives [tall green 
purple : tall yellow purple : dwarf green purple : dwarf yellow purple : tall green white 
: tall yellow white : dwarf green white : dwarf yellow white] × [terminal : axial] which 
gives (i) tall green purple terminal : (ii) tall yellow purple terminal : (iii) dwarf 
green purple terminal : (iv) dwarf yellow purple terminal : (v) tall green white 
terminal : (vi) tall yellow white terminal : (vii) dwarf green white terminal : (viii) 
dwarf yellow white terminal : (ix) tall green purple axial : (x) tall yellow purple 
axial : (xi) dwarf green purple axial : (xii) dwarf yellow purple axial : (xiii) tall 
green white axial : (xiv) tall yellow white axial : (xv) dwarf green white axial : (xvi) 
dwarf yellow white axial. The possibilities can also be determined using a branched-
line diagram: 

 
 
 
 
 
 
 
 
 
 
 
 

 
b. Designate the alleles: T = tall, t = dwarf; G = green; g = yellow; P = purple, p = white; 

A = axial, a = terminal. The cross Tt Gg Pp Aa (an F1 plant) × tt gg pp AA (the dwarf 
parent) will produce 2 characters for the tall, green and purple genes, but only 1 
character (axial) for the fourth gene or 2 × 2 × 2 × 1 = 8 different phenotypes. The 
first 3 genes will give 1 dominant : 1 recessive ratios of the characters, because this is 
in effect a testcross for each gene. Thus, the proportion of each phenotype in the 
progeny will be 1/2 × 1/2 × 1/2 × 1 = 1/8. 

  Using either of the methods described in part (a), the progeny will be 1/8 tall 
green purple axial : 1/8 tall yellow purple axial : 1/8 dwarf green purple axial :    
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1/8 dwarf yellow purple axial : 1/8 tall green white axial : 1/8 tall yellow white 
axial : 1/8 dwarf green white axial : 1/8 dwarf yellow white axial. 

27. For each separate cross, determine the number of genes involved. Remember that the 
existence of 4 phenotypic classes in the progeny means that 2 genes control the 
phenotypes. Next, determine the phenotypic ratio for each gene separately. A 3:1 
phenotypic ratio of progeny tells you which character is dominant and that both parents 
were heterozygous. In contrast, a 1:1 ratio results from a testcross where the dominant 
parent was heterozygous. 

a. Two genes with alternate alleles are at play in this cross (four phenotypes). One gene 
controls flower color (purple or white) with a phenotypic ratio in the offspring of        
94 + 28 = 122 purple : 32 + 11 = 43 white or ~3 purple : ~1 white. The second gene 
controls pod texture (spiny or smooth) with a phenotypic ratio in the offspring of         
94 + 32 =126 spiny : 28 + 11 = 39 smooth or ~3 spiny : ~1 smooth. Thus, designate 
the alleles P = purple, p = white; S = spiny, s = smooth. This is a straightforward 
dihybrid cross: Pp Ss  × Pp Ss  →  9 P– S– : 3 P– ss : 3 pp S– : 1 pp ss. 

b. The 1 spiny : 1 smooth ratio indicates a testcross for the pod texture gene. Because all 
progeny were purple, at least one parent plant must have been homozygous for the   
P allele of the flower color gene. The cross was either PP Ss  × P– ss  or                            
P– Ss  × PP ss.  

c. This row is similar to part (b), but here all the progeny were spiny so at least one 
parent must have been homozygous for the S allele. The 1 purple : 1 white testcross 
ratio indicates that the parents were either Pp S– × pp SS or Pp SS × pp S–. 

d. For color, there are 89 + 31 = 120 purple : 92 + 27 = 119 white. A 1 purple : 1 white 
ratio denotes a testcross. For texture, there are 89 + 92 = 181 spiny : 31 + 27 =                 
58 smooth, or a 3 spiny : 1 smooth ratio, indicating that the parents were both 
heterozygous for the S gene. The genotypes of the parents were Pp Ss  ×  pp Ss.  

e. A 3 purple : 1 white ratio exists among the progeny, so the parents were both 
heterozygous for the P  gene. All progeny had smooth pods, so the parents were both 
homozygous recessive ss.  The genotypes of the parents are Pp ss  ×  Pp ss .  

f. A 3 spiny : 1 smooth ratio exists, indicative of a cross between heterozygotes                  
(Ss ×  Ss). All progeny were white, so the parents must have been homozygous 
recessive pp. The genotypes of the parents are pp Ss  ×  pp Ss.  

28. Three traits (each controlled by a different gene) are analyzed in this cross. While we can 
usually tell which alleles are dominant from the phenotype of the heterozygote, we are 
not told the phenotype of the heterozygote in this case. Instead, use the phenotypic ratios 
for each trait to determine which allele is dominant and which is recessive for each gene. 
Consider height first. There are 272 + 92 + 88 + 35 = 487 tall plants and 93 + 31 + 29 + 
11 = 164 dwarf plants. This is a ratio of ~3 tall : ~1 dwarf, indicating that tall is dominant. 
Next consider pod shape, where there are 272 + 92 + 93 + 31 = 488 inflated pods and       
88 + 35 + 29 + 11 = 163 flat pods, or approximately 3 inflated : 1 flat, so inflated is 
dominant. Finally, consider flower color. There were 272 + 88 + 93 + 29 + 11 = 493 
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purple flowers and 92 + 35 + 31 + 11 = 169 white flowers, or ~3 purple : ~1 white. Thus, 
purple is dominant. 

29. Diagram each of these crosses, remembering that you were told that tiny wings = t , 
normal wings = T, narrow eye = n, and oval (normal) eye = N. You thus know that one 
gene determines the wing trait and a different gene determines the eye trait, and you also 
know the dominance relationship between the alleles of each gene. 

In cross 1, all of the parents and offspring have tiny wings so no variability exists in 
the wing gene, and all flies in this cross are tt.  Note that although both parents have oval 
eyes (N–), the eyes in the offspring are ~3 oval : ~1 narrow. This monohybrid phenotypic 
ratio means that both parents are heterozygous for the eye gene (Nn). Thus, the parents 
in cross 1 are: tt Nn ♂  ×  tt Nn ♀. 

In cross 2 consider the wings first. The male parent has normal wings (T–), and the 
female parent has tiny wings (tt )  so this is a testcross. The offspring show a ratio of             
~1 tiny : ~1 normal. Therefore, the normal male parent must be heterozygous (Tt ) . For 
eyes, the female parent is oval (N–) the male parent is narrow (nn ) so this is a testcross 
for the eye gene. The offspring are ~1 oval : ~1 narrow, so the oval female parent is an                       
Nn heterozygote. Thus, parents in cross 2 are: Tt nn ♂ × tt Nn ♀. 

In cross 3, the parents both have normal wings (T–) and their offspring are                       
~3 normal : ~1 tiny. Thus, both parents are Tt  heterozygotes. For the eye gene, the female 
parent is oval (N– ) and the male parent is narrow (nn ), so cross 3 is a testcross. Both eye 
types are seen in the offspring in a ~1 normal : ~1 narrow ratio, so the female parent is 
heterozygous (Nn ). The parents in cross 3 are: Tt nn ♂ × Tt Nn ♀. 

When examining cross 4 you notice a monohybrid phenotypic ratio in the offspring 
of ~3 normal : ~1 tiny for the wings. Thus, both normal-winged parents are Tt. Because 
the female parent has normal eyes (N– ) and the male parent has narrow eyes (nn ), this 
cross is a testcross for the eye gene. All the progeny have oval eyes, so the female parent 
must be homozygous NN. Thus, the parents in cross 4 are: Tt nn ♂  ×  Tt NN ♀. 

30.  a. Analyze each gene separately: Tt  ×  Tt will give 3/4 T–  (normal wing) offspring. The 
cross nn  ×  Nn  will give 1/2 N–  (normal eye) offspring. To calculate the probability 
of the normal offspring, apply the product rule to the normal portions of the ratios by 
multiplying these two fractions: 3/4 T– × 1/2 N– = 3/8 T– N –. Thus, 3/8 of the 
offspring of this cross will have normal wings and oval eyes. 

b. Diagram the cross:  
  Tt nn  ♀ ×  Tt Nn  ♂ →  ? 

First, find the phenotypic ratio in the offspring separately for each gene. A cross of    
Tt × Tt  →  3/4 T–  (normal wings) : 1/4 tt (tiny wings). For the eyes the cross is                   
nn × Nn  →  1/2 N – (oval) : 1/2 nn (narrow). Second, applying the product rule gives 
3/8 T– N – (normal oval) : 3/8 T– nn (normal narrow) : 1/8 tt N– (tiny oval) :               
1/8 tt nn (tiny narrow). Finally, multiply each fraction by 200 progeny to find the 
expected ratio, which is 75 normal oval : 75 normal narrow : 25 tiny oval :                   
25 tiny narrow. 

31.  a.  The protein specified by the pea color gene is an enzyme called Sgr, which is 
required for the breakdown of the green pigment chlorophyll. (See Fig. 1.17b.) 



	 	
chapter 1

	 	
	 	

1-17 
Copyright © 2021 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior 

written consent of McGraw-Hill Education. 

 b. The y  allele could be a null allele because it does not specify the production of any 
of the Sgr enzyme. 

 c. The Y allele is dominant because in the heterozygote, the single Y allele will lead to 
the production of some Sgr enzyme, even though the y allele cannot specify any Sgr. 
The amount of the Sgr enzyme made in heterozygotes is sufficient for yellow 
color. 

 d. In yy peas, the green chlorophyll cannot be broken down, so this pigment stays in 
the peas, which remain green in color. 

 e. If the amount of Sgr protein is proportional to the number of functional copies of the 
gene, then YY  homozygotes should have twice the amount of Sgr protein as do Yy 
heterozygotes. Yet both YY and Yy peas are yellow. These observations suggest that 
half the normal amount of Sgr enzyme is sufficient for the pea to break down 
enough chlorophyll that the pea will be yellow. 

 f. Just as was seen in part (e), for many genes (including that for pea color), half the 
amount of the protein specified by the gene is sufficient for a normal phenotype. 
Thus, in most cases, even if the gene is essential, heterozygotes for null alleles will 
survive. The advantage of having two copies of essential genes is then that even if 
one normal allele becomes mutated (changed) so that it becomes a null allele, the 
organism can survive because half the normal amount of gene product is usually 
sufficient for survival.  

 g. Yes, a single pea pod could contain peas with different phenotypes because a pod 
is an ovary that contains several ovules (eggs), and each pea represents a single 
fertilization event involving one egg and one sperm (from one pollen grain). If the 
female plant was Yy or yy, then it is possible that some peas in the same pod would 
be yellow and others green. For example, fertilization of a y egg with Y sperm would 
yield a yellow pea, but if the sperm was y, the pea would be green. However, a pea 
pod could not contain peas with different phenotypes if the female plant was YY, 
because all the peas produced by this plant would be yellow. 

 h. Yes, it is possible that a pea pod could be different in color from a pea growing 
within it. One reason is that, as just seen in part (g), a single pod can contain green 
and yellow peas. But a more fundamental reason is that one gene controls pea color, 
while a different gene controls the pod color. (See Fig. 1.5.) 

32. If the alleles of the pea color and pea shape genes inherited from a parent in the                        
P generation always stayed together and never separated, then the gametes produced by 
the doubly heterozygous F1 individuals in Fig. 1.12 would be either Y R or y r . (Note that 
only two possibilities would exist, and these would be in equal frequencies.) On a Punnett 
square (male gametes shaded in blue, female gametes in red): 
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  Y R 
½  

y r 
½  

 Y R 
½ 

YY RR 
¼ 

Yy Rr 
¼ 

 y r 
½ 

Yy Rr 
¼ 

yy rr 
¼ 

 
Thus, the genotypic ratios of the F2 would be 1/4 YY RR, 1/2 Yy Rr , and 1/4 yy rr . 
The phenotypic ratios among the F2 would be 3/4 yellow round and 1/4 green 
wrinkled. These results make sense because if the alleles of the two genes were always 
inherited as a unit, you would expect the same ratios as in a monohybrid cross.  

33. Similar to what you saw in Fig. 1.17, the most likely biochemical explanation is that 
the dominant allele L  specifies functional G3βH enzyme, while the recessive allele l  
is incapable of specifying any functional enzyme (in nomenclature you will see in later 
chapters, l  is a null allele). The functional enzyme can synthesize the growth hormone 
gibberellin, so plants with the L allele are tall. Even half the normal amount of this 
enzyme is sufficient for tallness, explaining why Ll  heterozygotes are tall. 

34. a. As in Problem 33, the dominant allele P  most likely specifies a functional product 
(in this case, the protein bHLH), while the recessive p  allele cannot specify any 
functional protein. The fact that the hybrid (the heterozygote) is purple (as shown 
in Fig. 1.5) indicates that half the normal amount of active bHLH protein is sufficient 
for purple color. 

 b. Yes, flower color could potentially be controlled by genes specifying the enzymes 
DFR, ANS, or 3GT in addition to the gene specifying the bHLH protein. Alleles 
specifying functional enzymes would yield purple color, while those that could not 
produce functional enzymes would cause white color. From the reasoning in part (a), 
it is likely that the purple alleles of these genes would be dominant to the white alleles. 

 
Section 1.3 

35.  To clarify which are the dominant and recessive alleles, in answering this question, we 
are using Mendelian symbols instead of the symbols normally used for human 
genotypes.  

a. Recessive. Two unaffected (and consanguineous) individuals have an affected child 
(aa). Therefore, the parents involved in the consanguineous marriage must both be 
carriers (Aa). In addition, II-1 and V-2 are affected (aa); all unaffected individuals 
except II-2, II-4, III-4, III-5, and possibly V-1 are carriers (Aa).  

b. Dominant. The trait is seen in each generation and every affected person (A–) has an 
affected parent. Note that III-3 is unaffected (aa) even though both his parents are 
affected; this would not be possible for a recessive trait. The term carrier is not 
applicable, because everyone with a single A allele shows the trait. All affected 
individuals are Aa, except III-4, III-5, and III-6 could be AA (that is, the latter three 
individuals are A–).  
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 c. Recessive. Unaffected, carrier parents (Aa ) have an affected child (aa ), as in part (a). 
I-2 and III-4 are affected (aa ); everyone in generation II is a carrier (Aa ); III-1, III-2, 
and III-3 could be either AA or Aa; I-1 is almost certainly AA  if the disease is rare. 

36.  a. Cutis laxa must be a recessive trait because affected child II-4 has normal parents. 
II-4 is affected, so she must have received a disease allele (CL) from both parents. The 
mother (I-3) and the father (I-4) are both heterozygous (CL+CL).  

 b. The mother of II-2 is affected and therefore is of genotype CL CL (I-1). II-2 herself 
does not have cutis laxa, but she must have received a CL allele from her mother. 
Therefore, II-2’s genotype must be CL+CL, meaning that the probability that II-2 is 
a carrier is 100%.  

 c. As described in part (a) both parents in this cross are carriers: CL+ CL ×  CL+CL. 
The expected genotypic ratio in the children is 1 CL+CL+ : 2 CL+CL : 1 CL CL. 
However, II-3 is not affected, so he cannot be CL CL. Therefore, the remaining 
possibilities are 1 CL CL+ : 2 CL+CL, and so a 1/3 probability exists that he is 
CL+CL+, while a 2/3 probability exists that he is a carrier (CL+CL).  

 d. As shown in part (b), II-2 must be a carrier (CL+CL). In order to have an affected 
child, II-3 must also be a carrier. The probability of this is 2/3 as shown in part (c). 
The probability of two heterozygous parents having an affected child is 1/4. Apply the 
product rule to these probabilities: 1 (probability that II-2 is CL+CL) ×                               
2/3 (probability that II-3 is CL+ CL) × 1/4 (probability of an affected child from a 
mating of two carriers) = 2/12 = 1/6. 

37.  Diagram the cross as a pedigree. Remember that the affected siblings must be CF CF. 

 

 

 

 

 

 

 
 
 
 
a. Both families have an affected sibling, so both sets of parents (that is, all the people 

in generation I) must have been carriers. Thus, the expected genotypic ratio in the 
children is 1/4 affected : 1/2 carrier : 1/4 homozygous normal. II-2 is unaffected, so 
she cannot be CF CF. The remaining possible genotypes are 2 CF+CF  : 1 CF+CF+, 
and the probability is 2/3 that II-2 is a carrier. 

I

III

II
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?

CF CF CF CF

CF+CF CF+CFCF+CFCF+CF
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b. The probability that II-2 × II-3 will have an affected child is 2/3 [the probability that 
the mother is a carrier as seen in part (a)] × 2/3 (the probability the father is a carrier 
using the same reasoning) × 1/4 (the probability that two carriers will produce an 
affected child) = 1/9.  

c. The probability that both parents are carriers and that their child will be a carrier is 
2/3 × 2/3 × 1/2 = 2/9 [using the same reasoning as in part (b), except asking that the 
child be a carrier instead of affected]. However, CF+CF+  × CF+ CF parents can also 
have children who are carriers. Remember that there are two possible ways for this 
particular mating to occur: homozygous father × heterozygous mother or vice versa. 
Thus, the probability of one of these matings producing a carrier child is:  2 × 1/3 (the 
probability that a particular parent is CF+CF+) × 2/3 (the probability that the other 
parent is CF+CF × 1/2 (the probability such a mating would produce a carrier child) 
= 2/9. The probability that a child would be a carrier from either of these two 
scenarios (where both parents are carriers or where only one parent is a carrier) is the 
sum of these mutually exclusive events, or 2/9 + 2/9 = 4/9. 

38.  a. Because the disease is rare, the affected father is most likely to be heterozygous         
(HD HD+). A 1/2 chance exists that the son inherited the HD allele from his father 
and will develop the disease. 

 b. The probability of an affected child is: 1/2 (the probability that Joe is HD HD+) ×     
1/2 (the probability that the child inherits the HD allele if Joe is HD HD+) = 1/4. 

39.  The trait is recessive because pairs of unaffected individuals who must therefore be 
carriers (I-1 × I-2 as well as II-3 × II-4) had affected children (II-1, III-1, and III-2). 
Three apparently unrelated individuals must have been carriers (I-1, I-2, and II-4), so 
the disease allele appears to be common in the population. 

40. a. The inheritance pattern seen in Fig. 1.19 could be caused by a rare dominant 
mutation. In this case, the affected individuals would be heterozygous (HD+  HD) 
and the normal individuals would be HD+HD+. Any mating between an affected 
individual and an unaffected individual would give 1/2 normal (HD+HD+) :               
1/2 affected (HD+HD) children. However, the same pattern of inheritance could 
be seen if the disease were caused by a common recessive mutation. In the case of 
a common recessive mutation, all the affected individuals would be HD HD. Because 
the mutant allele is common in the population, most or even all the unrelated 
individuals could be assumed to be carriers (HD+ HD). Matings between affected and 
unaffected individuals would then also yield phenotypic ratios of progeny of                 
1/2 normal (HD+HD) : 1/2 affected (HD HD). 

b. Determine the phenotype of the 14 children of III-6 and IV-6. If the disease is due 
to a recessive allele, then III-6 and IV-6 must be homozygotes for this recessive allele, 
and all their children must have the disease. If the disease is due to a dominant allele, 
then III-6 and IV-6 must be heterozygotes (because they are affected but they each 
had one unaffected parent), and 1/4 of their 14 children would be expected to be 
unaffected. 
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  Alternatively, you could look at the progeny of matings between unaffected 
individuals in the pedigree such as III-1 and an unaffected spouse. If the disease 
were due to a rare dominant allele, these matings would all be homozygous recessive 
× homozygous recessive and would never result in affected children. If the disease is 
due to a recessive mutation, then many of these individuals would be carriers, and if 
the trait is common then at least some of the spouses would also be carriers, so such 
matings could result in affected children.  

41.  a. For the couple in generation V in Fig. 1.21a to have a child with cystic fibrosis, both 
of them would have to be carriers, meaning that they would both have to have 
inherited the CF allele from their great-great-grandfather or great-great-grand-
mother in generation I. The chance that V-1 inherited the CF  allele is: 1/2 (the chance 
that II-2 inherited CF ) × 1/2 (the chance of III-2 inheriting CF  if II-2 was a carrier) 
× 1/2 (the chance of IV-2 inheriting CF  if III-2 was a carrier) × 1/2 (the chance of     
V-1 inheriting CF  if IV-2 was a carrier) = 1/16. Using the same logic, the chance that 
V-2 inherited the CF  allele is also 1/16. Thus, the chance that their child would be 
CF CF  is 1/16 × 1/16 × 1/4 (the chance that they both give the CF  allele to their child 
given that they are both carriers) = 1/1024. The consanguineous couple in Fig. 1.21a 
was thus extremely unlucky in this outcome for their child. 

 b. Knowing that VI-4 has cystic fibrosis simplifies this problem because we know 
definitively that V-1 and V-2 are both carriers. The likelihood of VII-1 having the 
disease depends on the chance that both of his parents are carriers. The chance that 
her mother (VI-2) is a carrier is 2/3. The reason is that both V-1 and V-2 are carriers, 
so their expected progeny ratio is 1 CF+CF+ : 2  CF+CF : 1 CF CF. However, we 
know that VI-2 is not CF CF (she is unaffected), which leaves 1 CF+CF+ : 2  CF+CF, 
or a 2/3 chance that VI-2 is CF+CF. The chance that her father (VI-1) is CF+CF is 
1/1000. Thus, given the problem’s assumptions, the chance that VII-1 would have 
cystic fibrosis is 2/3 × 1/1000 (the chance that both her parents are carriers) ×                
1/4 (the chance that she inherits CF from both parents) = 1/6000.  

42.  a. The pedigree diagram that describes this situation is: 

 

 
 
 
 
 
 
 

I

III

II

IV

1

1

21

4321

2



	 	
chapter 1	

	 	
1-22 

Copyright © 2021 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior 
written consent of McGraw-Hill Education. 

 We’ll use Mendelian symbols as opposed to the symbols normally used for human 
genes here to clarify which are the dominant and which are the recessive alleles. Let’s 
designate a the symbol for the recessive disease allele carried by the common 
grandfather (I-1) of the first cousins (III-1 and III-2), and A the normal allele. 
Similarly, let b be the symbol for the recessive disease allele carried by their common 
grandmother (I-2), with the normal allele B. The question is: what is the chance that 
the child of the first cousins (IV-1) would be either aa or bb? 

  For IV-1 to be aa, both first cousins (III-1 and III-2) have to be Aa, which means 
that II-2 and II-3 must also both be Aa. The chance that II-2 inherited the a allele 
from I-1 is 1/2, and the chance that II-3 inherited the a allele from I-2 is also 1/2.  
Given that II-2 and II-3 are Aa, the chance that III-1 inherited II-2’s a allele is 1/2, 
and the chance that III-2 inherited II-3’s a allele is 1/2. For both first cousins to be 
Aa, all of these conditions must be met, and so the probability that both first cousins 
are Aa is 1/2 × 1/2 × 1/2 × 1/2 = 1/16. As the expected frequency of aa from a cross 
of Aa × Aa is 1/4, the chance that the child of the first cousins will be aa is                     
1/16 × 1/4 = 1/64. By the same logic, the chance that their child will be bb is also 
1/64. Therefore, the chance that the child of the first cousins will be either aa or bb  is 
close to 1/64 + 1/64 = 2/64 = 1/32.  

  The exact answer is a bit less because our calculation of the probability of  
 IV-1 being aa included the chance of the child being aa bb. So did our calculation of 
the chance that IV-2 is bb. Therefore, we need to subtract one of those aa bb chances. 
The probability that the child is aa bb is 1/64 × 1/64 = 1/4096. Thus, a more accurate 
estimate of the chance that the child is aa or bb is 1/32 – 1/4096 ≈ 1/32.25. 

 b. This is a really hard question, but we asked it because it’s interesting to think about 
whether it makes sense, on genetic grounds, for first cousin marriages to be banned, 
which is the subject of part (c). Also, if you remember how to answer questions like 
this one, you will be a very powerful genetics problem solver!  

   The chance that two random people have the same disease allele is 1/6,000 × 
1/6,000 = 1/36,000,000. And if they do, the chance that their child will be homozygous 
is 1/4. Thus, the overall chance of two random people having a child homozygous for 
a recessive disease allele for any 1 of the 6000 disease genes is 1/4 × 1/36,000,000 = 
1/144,000,000. The chance that the child would not be homozygous for a specific one 
of the 6,000 recessive genetic disease alleles is 1−(1/144,000,000) = 
143,999,999/144,000,000. (The reason is that a person is either homozygous for a 
particular allele or they are not—those are the only two choices; the sum of their 
probabilities equals 1.) The chance that their child would not be homozygous for a 
recessive disease allele at any one of the 6,000 loci is (143,999,999/144,000,000)6000. 
(You use the product rule to determine the chance that this event happens 6000 
times.) Finally, the chance that a person would be homozygous for at least one 
recessive disease allele is 1 – (143,999,999/144,000,000)6000 = 0.00004167 = 1/23,998. 
(The reason is that every person is either homozygous for no disease gene alleles, or 
for at least 1—those are the only two choices and so the sum of their probabilities is 
1.) 
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 c. We calculated in part (a) that the chance is ~1/32 that first cousins would have a child 
homozygous for a recessive disease allele, which is much higher than the risk for two 
random individuals (~1/24,000). However, because only a small fraction of birth 
defects is caused by homozygosity for recessive alleles, the overall chance of serious 
defects at birth for any child in the U.S. is estimated to be as high as 3/100. Thus, it 
would appear that first-cousin parents do not have much of an overall increased 
risk of having children with birth defects (1/32 = 3/96, which is close to 3/100). (We 
are assuming that the fraction of first-cousin parents among all the parents in the U.S. 
is tiny, and that the children of first-cousin parents do not have a higher tendency 
than unrelated parents to have congenital birth defects with nongenetic causes.)  

43.  Diagram the cross by drawing a pedigree: 

  

 

 

 

 

 

 
 
 

 
a. Assuming the disease is rare, the first generation is H+H+ unaffected (I-1) ×                

HH  affected (I-2). Thus, both children (II-2 and II-3) must be carriers (H+H). Again, 
assuming this trait is rare in the population, those people marrying into the family 
(II-1 and II-4) are homozygous normal (H+H+). Therefore, the probability that III-1 
is a carrier is 1/2; III-2 has the same chance of being a carrier. Thus, the probability 
that a child produced by these two first cousins would be affected is 1/2 (the 
probability that III-1 is a carrier) × 1/2 (the probability that III-2 is a carrier) ×              
1/4 (the probability the child of two carriers would have an HH genotype) = 1/16 = 
0.0625. 

b. If 1/10 people in the population are carriers, then the probability that II-1 and II-4 are 
H+H is 0.1 for each. In this case an affected child in generation IV can only occur if 
III-1 and III-2 are both carriers. III-1 can be a carrier as the result of 2 different 
matings: (i) II-1 homozygous normal × II-2 carrier or (ii) II-1 carrier × II-2 carrier. 
[Note that whether I-1 is H+H+ or H+H, II-2 must be a carrier because of the normal 
phenotype (II-2 cannot be HH) and the fact that one parent was affected.] The 
probability of III-1 being a carrier is thus the probability of mating (i) × the probability 
of generating a H+H child from mating (i) + the probability of mating (ii) ×                  
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the probability of generating an H+H child from mating (ii) = 0.9 [the probability II-
1 is H+H+, which is the probability for mating (i)] × 1/2 [the probability that III-1 will 
inherit H in mating (i)] + 0.1 [the probability II-1 is H, which is the probability for 
mating (ii)] × 2/3 [the probability that III-1 will inherit H in mating (ii); remember 
that III-1 is known not to be HH] = 0.45 + 0.067 = 0.517. The chance that III-2 will 
inherit H is the same. Thus, the probability that IV-1 is HH = 0.517 (the probability 
III-1 is H+H) × 0.517 (the probability that III-2 is H+H) × 1/4 (the probability the 
child of two carriers will be HH) ≈ 0.067. This number is slightly higher than the 
answer to part (a), which was 0.0625, so the increased likelihood that II-1 or II-4 is a 
carrier makes it only slightly more likely that IV-1 will be affected. 

   The results of this problem should prove to you that in probability calculations 
involving the outcomes of consanguineous matings, it makes sense to assume that 
people in the diagram who are unrelated genetically to the person who introduced a 
recessive disease allele are homozygous for the normal allele (not carriers). You just 
saw that when you take into account a 1/10 chance that these unrelated people are 
carriers, it did not change very much your probability calculation. The frequency of 
recessive disease allele carriers in most populations is usually orders of magnitude 
lower than 1/10, so taking these possibilities into account is unlikely to change your 
calculation at all. It is usually overwhelmingly more likely that related individuals 
who are both carriers of recessive disease alleles each inherited the allele from their 
common ancestor than that each of their disease alleles had different sources. 

44.  a. Both diseases are known to be rare, so normal people in the pedigree unrelated 
genetically to I-1 or I-2 are assumed to be homozygous normal. (Again, we are using 
Mendelian symbols as opposed to human genetics symbols here to clarify which 
alleles are dominant and which are recessive.) Nail-patella (N) syndrome is 
dominant because all affected children have an affected parent. Alkaptonuria (a) is 
recessive because the affected children are the result of a consanguineous mating 
between two unaffected individuals (III-3 × III-4). Because alkaptonuria is a rare 
disease, it makes sense to assume that III-3 and III-4 inherited the same a allele from 
a common ancestor. Genotypes: I-1 nn Aa; I-2 Nn AA (or I-1 nn AA and I-2 Nn Aa); 
II-1 nn AA; II-2 nn Aa; II-3 Nn A–;  II-4 nn A–; II-5 Nn Aa; II-6 nn AA;                    
III-1 nn AA; III-2 nn A–;  III-3 nn Aa;  III-4 Nn Aa; III-5 nn A–;  III-6 nn A–;  
IV-1 nn A–;  IV-2 nn A–; IV-3 Nn A–;  IV-4 nn A–; IV-5 Nn aa;  IV-6 nn aa;      
IV-7 nn A–.  

b. The cross is nn A– (IV-2) × Nn aa (IV-5). The ambiguity in the genotype of IV-2 is 
due to the uncertainty of his father's genotype (III-2). His parents' genotypes are                     
nn AA (II-1) × nn A– (II-2), so there is a 1/2 chance III-2 is nn AA and a 1/2 chance 
he is nn Aa. If he is nn Aa, there is a 1/2 chance IV-2 would have inherited his a allele. 
Therefore, the overall chance that IV-2 is nn Aa is 1/2 × 1/2 = 1/4, and the chance 
that IV-2 is nn AA is 3/4. 

For the child to have both syndromes (N–aa), IV-2 would have to be nn Aa. The 
cross would then be nn Aa × Nn aa, and the chance of an N– aa child from this cross 
is 1/2 × 1/2 = 1/4. Thus, the chance that the child would be N–aa is 1/4 (the chance 
that IV-2 is nn Aa) × 1/4 = 1/16.       
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The child can have nail-patella syndrome only (N– A–) if IV-2 is nnAa or nn AA. 
If the cross is nn Aa × Nn aa, the chance that the child would be N– A–  (Nn Aa) is 
1/2  × 1/2 = 1/4.  If the cross is nn AA × Nn aa, the chance that the child is Nn Aa is 
1/2  ×  1 = 1/2. We need to use weighted probability to determine the chance that the 
child is Nn Aa:  [1/4 (the chance that IV-2 is nn Aa) × 1/4] + [3/4 (the chance that        
IV-2 is nn AA) × 1/2] = 1/16 + 3/8 = 7/16. 

For the child to have alkaptonuria only (nn aa), IV-2 must be nn Aa; the cross 
would be nn Aa × Nn aa. The probability of an nn aa child from this cross is                  
1/2 × 1/2 = 1/4. Thus, the chance that the child would be nn aa  is 1/4 (the chance 
that IV-2 is nn Aa) × 1/4 = 1/16. 

The probability that the child would have neither defect is                                             
1 − [P(only alkaptonuria) + P(only nail-patella syndrome) + P(both defects)] =    
1 − (1/16 + 7/16 + 1/16) = 1 − 9/16 = 7/16. You can make this calculation because 
only the four possible outcomes exist, and you have already calculated the 
probabilities of three of them. 

45.  Diagram the cross(es): 

                        midphalangeal ×  midphalangeal  →  1853 midphalangeal : 209 normal 
                                 M  ?  ×          M  ?           →                           M  ?  :  M+M+ 

         The following crosses are possible: 
 MM+ × MM →   all MM 
 MM+ × MM →   all − 
 MM × MM+ →   all − 
 MM+ × MM+ →   3/4 M− : 1/4 M+M+ 

The 209 normal children must have arisen from the last cross, so approximately                        
3 × 209 ≈ 630 children should be their M− siblings. Thus, about 840 of the children or 
~40% came from the last mating and the other 60% of the children (all of whom have 
midphalangeal hair) were the result of one or more of the other matings. This problem 
illustrates that much care in interpretation is required when the results of many matings 
in mixed populations are reported (as opposed to the results of matings where individuals 
have defined genotypes). 

46.  a. An equally likely possibility exists that any child produced by this couple will be 
affected (A) or unaffected (U). For two children, the possibilities are: AA, AU, UA, 
UU. The case in which only the second child is affected is UA; this is one of the four 
equally likely possibilities, so the probability that only the second child is affected is 
1/4.  

 b. From the list just presented in part (a), you can see that two possibilities exist in which 
only one child is affected: AU and UA. The probability that either of these two 
mutually exclusive possibilities will occur is the sum of their independent 
probabilities: 1/4 + 1/4 = 1/2. 

 c. From the list just presented in part (a), you can see that only one possibility exists in 
which no child is affected: UU. The probability of this event is 1/4. 
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 d. If this family consisted of 10 children, the case in which only the second child out 
of the 10 is affected (that is, UAUUUUUUUU) has a probability of 1/210 =        
1/1024 ≈ 0.00098. This probability is based on the facts that each birth is an 
independent event, and that the chance of U and A are each 1/2. We thus use the 
product rule to determine the chance that each of those 10 independent events will 
occur in a particular way—one particular birth order.  

   In a family of ten children, 10 different outcomes (birth orders) exist that satisfy 
the criterion that only 1 child has the disease. Only the first child could have the 
disease, only the second child, only the third child, etc.: 

 
     1.   AUUUUUUUUU 
    2.   UAUUUUUUUU 
    3.   UUAUUUUUUU 
    4.   UUUAUUUUUU 
    5.   UUUUAUUUUU 
    6.   UUUUUAUUUU 
    7.   UUUUUUAUUU 
    8.   UUUUUUUAUU 
    9.   UUUUUUUUAU 
    10. UUUUUUUUUA 
       
  We have already calculated that the chance of one of these outcomes in particular 

(#2) is 1/1024. As each of the 10 possibilities has the same probability, the probability 
that only one child is affected would be 10 × (1/1024) = 10/1024 ≈ 0.0098.  

   Only one possibility exists in which no child would be affected 
(UUUUUUUUUU), and like any other specific outcome, this one has a probability 
of 1/1024 ≈ 0.00098. 

e.  One way to determine the probability that four children in a family of ten will have   
 the disease is to write down all possible outcomes for the criterion, as we did above 
 for the second answer in part (d). Then, also as we did above, sum their individual 
 probabilities, each of which is (1/2)10  just as before. If you start to do this…… 

 
1.   AAAAUUUUUU 

    2.   AAAUAUUUUU 
    3.   AAAUUAUUUU 
    4.   AAAUUUAUUU 
    5.   AAAUUUUAUU 
    6.   AAAUUUUUAU 
    7.   AAAUUUUUUA 
    8.   AAUAAUUUUU 
    9.   AAUAUAUUUU 
    10. AAUAUUAUUU 
     etc. 
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…..you will realize fairly quickly that writing down every possible birth order in this 
case is quite a difficult task and you are likely to miss some outcomes. In short—this 
is not a good way to find the answer! For questions like this, it is far preferable to use 
a mathematical tool called the binomial theorem to determine the number of 
possible outcomes that satisfy the criterion. The binomial theorem looks like this: 
 
P (X will occur s times, and Y will occur t times, in n trials) = [n! /( s! × t!)](ps × qt) 
 
P = the probability of what is in parentheses on the left side of the equation. 
p = P(X) 
q = P(Y) 
X and Y are the only two possibilities, so p + q = 1. 
Also, s + t = n. 
Remember that ! means factorial:  For example 5! = 5 × 4 × 3 × 2 × 1  
 
To apply the binomial theorem to the question at hand (assuming you can still 
remember what the question was!), we’ll let X = a child has the disease (A), and              
Y = a child does not have the disease (U). Then, s = 4, t = 6, n = 10, p = 1/2, and            
q = 1/2. The answer to the question is then: 

  P (4 A and 6 U children out of 10) = (10! / 4! × 6!) (1/24 × 1/26) 
Notice that (ps × qt) = (1/24 × 1/26) = 1/210. This factor of the binomial theorem 
equation is the probability of each single birth order, as we saw previously in part (d) 
above. To get the answer to our question, we need to multiply this factor (the 
probability of each single birth order) by the number of different birth orders that 
satisfy our criterion. From the equation in the box above, this second factor is       
[n!/(s! × t!)] = (10! / 4! × 6!) = 210. Thus, the probability (P) of only 4 children 
having the disease in a family of 10 children is 1/210 × 210 ≈ 21%.    

47. In the case of cystic fibrosis, the alleles causing the disease do not specify active 
protein [in this case, the cystic fibrosis transmembrane receptor (CFTR)]. Some CF 
disease alleles specify defective CFTR proteins that do not allow the passage of chloride 
ions, while other CF disease alleles do not specify any CFTR protein at all. As you will 
learn in a later chapter, CF disease alleles of either type are called loss-of-function alleles. 
In a heterozygote, the normal CF+ allele still specifies active CFTR protein, which allows 
for the passage of chloride ions. Because the phenotype of heterozygotes is unaffected, 
these individuals must have enough active CFTR protein to allow passage of enough 
chloride ions for the cells to function normally. Loss-of-function alleles of most genes are 
recessive to normal alleles for similar reasons. But it is imperative to realize that 
important exceptions exist in which loss-of-function mutations are actually dominant to 
normal alleles; you will see examples of these exceptions later in the book.  

  In the case of Huntington disease, the disease-causing allele is dominant to the 
normal allele. The reason is that the mutant huntingtin protein specified by the HD 
disease allele has, in addition to its normal function (which is not entirely understood), 
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a second function that is toxic to nerve cells. This fact makes the HD disease allele a 
gain-of-function allele. The reason HD is dominant to HD+ is that the protein specified 
by the disease allele will be toxic to cells even if the cells have normal huntingtin protein 
specified by the normal allele. Most (but again not all) gain-of-function mutations are 
dominant to normal alleles for similar reasons. 

48.  Like the abnormal CF allele that causes cystic fibrosis, the mutant GLI3 allele that causes 
polydactyly is a loss-of-function allele—it makes no active protein. Unlike the one normal 
CF+ allele in CF+CF heterozygotes, however, the one normal GLI3+ allele in the       
GLI3+ GLI3 heterozygotes does not make enough protein to avoid a mutant phenotype—
in the case of GLI3, the fingers and toes of heterozygous individuals fail to develop 
properly. You will learn in a later chapter of this book that genes like GLI3 are called 
haploinsufficient genes. You have ~800 such genes in your genome, for which the 
amount of gene product made from one gene copy is not enough for the organism to 
function normally.   

  You might be wondering about the phenotype of GLI3 GLI3 homozygotes. If           
GLI3+ GLI3 heterozygotes have polydactyly, and GLI3 is dominant to GLI3+, you should 
expect that GLI3 GLI3 homozygotes would have polydactyly also. The fact is that the 
homozygotes die early in development. You will learn in the next chapter that many 
genes are pleiotropic—meaning that they control more than one trait. GLI3 is a 
pleiotropic gene; it controls the number of digits, and also aspects of embryonic 
development that are essential for viability. For the phenotype of viability, GLI3 is 
recessive to GLI3+. You will see in the next chapter that alleles like GLI3 are called 
recessive lethals. 

49.  a.  Recessive traits that are common in the population, like red hair in Scotland, show 
a vertical pattern of inheritance because recessive allele carriers and even 
homozygotes from outside the family will likely contribute gametes to every 
generation. Examples in the pedigree shown are II-1, II-4, and II-6. [Note that not 
every individual in this pedigree is a product of vertical inheritance (for example, III-
12) because red hair is due to a common recessive allele as opposed to a dominant 
one.] 

  b.  For IV-1 to have red hair, her mother (III-1) would have to be a carrier, and the chance 
of that is 40%. If III-1 is a carrier, the cross is Rr  (III-1) × rr (III-2) → r−  (IV-1), and 
the chance that IV-1 is rr is 1/2. Thus, the chance that child IV-1 will have red hair is 
0.4 × 1/2 = 0.2 = 20%. 

 c.  For IV-2 to have red hair, both III-9 and III-10 must be heterozygous (Rr). You know 
III-9 is Rr  because she does not have red hair but her mother II-4 did (that is, II-4 was 
rr). Both II-5 and II-6 must be Rr as they do not have red hair and they have a child 
who does have red hair. So, the chance that III-10 is Rr is 2/3 given that he does not 
have red hair. (You would expect 1 RR : 2 Rr : 1 rr, but rr is ruled out, leaving                          
1 RR : 2 Rr.) Thus, the chance that IV-2 has red hair is 1 (chance that III-9 is a 
heterozygote) × 2/3 (chance that III-10 is a heterozygote) × 1/4 (chance that two Rr 
parents have an rr child) = 1/6.  


